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Presented in this paper is the development of a control law for tuning a variable stiffness
vibration absorber to attenuate single frequency excitation in a non-collocated situation.
The control law is comprised of two distinct parts. First, a feedback controller is used to
obtain a 290° phase condition between the motion of the vibration absorber mass and
the location of interest. Next, a feedback based tuning strategy is used to precisely tune
the vibration absorber for performance maximization. The feedback based tuning is based
on the classical feedback structure of a regulating system and is used to tune the absorber
such that the accelerometer voltage resulting from the measurement of vibration of the
point of interest is minimized. An experimental verification of this control law is shown.
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1. INTRODUCTION

In many applications of vibration control, the sensor (at the point of interest for control)
is collocated with the vibration control actuator [1–5]. Unfortunately, for some
applications it is not possible to collocate the vibration control actuator at the location
of interest. This complicates the control problem because the dynamics of the intervening
structure between the control actuator and sensor plays a key role in the performance of
the vibration control system.

Thus far, only active control methods have been developed for the non-collocated
vibration control problem. For example, Bong et al. [6] used a Ha design technique to
design a controller to reduce the effects of solar array vibrations on telescope pointing jitter
for the Hubble Space Telescope. Balas and Doyle [7] used the structured singular value
approach to design a controller for a large flexible space structure which has closely spaced,
lightly damped modes. Yang and Mote [8] introduced a time delay in the feedback loop
to compensate for the phase difference between the actuator and sensor. This time delay
reduces the non-collocated vibration control problem to the collocated case. Long et al.
[9] used a neural network based on forward dynamics and decentralized control to
attenuate vibrations.

In contrast to active approaches, an adaptive–passive approach for the non-collocated
vibration control problem is presented in this paper. Specifically, a robust control law that
effectively tunes a vibration absorber to provide steady state vibration control of single
frequency harmonic excitations is developed. Such single frequencies excitations occur in
rotating and reciprocating machinery. The first part of this paper presents an investigation
of the steady state dynamic behavior of a non-collocated passive vibration absorber. This
dynamic analysis is followed by the development of a robust feedback based tuning
algorithm for adaptive–passive vibration control. Finally, a verification of this control law
is presented.
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2. DYNAMIC ANALYSIS OF NON-COLLOCATION

Presented in this section is the dynamic analysis of multi-degree-of-freedom lumped
parameter vibrating systems with a non-collocated passive vibration absorber. The class
of systems addressed, shown schematically in Figure 1, has N degrees of freedom (N-DOF)
which are excited by a single frequency input and a passive vibration absorber attached
to the Nth mass. Parameters of the vibration absorber are sought such that the steady
amplitude of the ith mass, where i $ (1, . . . , N−1) is minimized. This analysis will first
focus on a 3-DOF system to illustrate the steady state attenuation performance of a passive
vibration absorber. The trends for the 3-DOF case will be generalized to systems with a
higher number of degrees of freedom.

2.1. 3-   

The 3-DOF system with a vibration absorber is shown in Figure 2. The performance
goal is to minimize the amplitude of the non-collocated point of interest, either =x1 (t)= or
=x2 (t)=, by tuning the variable spring stiffness of the vibration absorber given that the system
parameters Mq , Cq , and Kq are fixed, where q $ I+/4. The following dynamic analysis will
first consider the special case with no damping in the intervening structure. Later, system
damping will be addressed by building upon the results of the undamped case.

2.1.1. Steady state attenuation of =x2 (t)=
The transfer function relating the excitation force F(s) to the displacement of M2 , X2 (s),

is

X2 (s)/F(s)=

[C2 s+K2 ][M3ms4 + (C3m+M3c+ cm)s3 + (M3k+K3m+C3c+ km)s2 + (K3c+C3k)s+K3k]
D(s)

,

(1)

where D(s) denotes the characteristic equation of the system.

Figure 1. The N-DOF system model appended with a vibration absorber.
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Figure 2. The 3-DOF system appended with a vibration absorber.

For complete steady state attenuation of x2 (t) to occur, there must exist a real value
k (vibration absorber spring stiffness) such that the numerator of equation (1) is zero for
s=jv. The numerator of equation (1) is comprised of two polynomials in s. The first
polynomial (C2 s+K2 ) is not influenced by the vibration absorber spring stiffness k. The
zeros of the remaining numerator polynomial can be rewritten in the form

1+ kG(s)=1+ k
(M3 +m)s2 +C3 s+K3

M3ms4 + (C3m+M3c+mc)s3 + (K3m+C3c)s2 +K3cs
=0, (2)

zXXXXXXXXXXcXXXXXXXXXXv
G(s)

which resembles the classical root locus form, 1+ kG(s)=0 [10]. Thus, the dynamic
analysis will proceed as a standard root locus analysis where the system gain to be varied
is the vibration absorber spring stiffness k.

The zeros of equation (2) are the roots of the characteristic equation (CE) for the 2-DOF
subsystem consisting of the intervening structure and vibration absorber. The transfer
functions Xi (s)/F(s)=Ni (s)/a(s) and Xa (s)/F(s)=Na (s)/a(s) relate the displacement of
the ith mass and absorber mass to the excitation, respectively. The transfer function of
the subsystem is Xa (s)/Xi (s)= (Xa (s)/F(s))(F(s)/Xi (s))=Na (s)/Ni (s). Therefore the zeros
of Xi (s)/F(s) are roots of the CE of the subsystem Xa (s)/Xi (s). This observation will
provide physical insight in the analysis to follow.

2.1.1.1. Analysis of =x2 (t)= for undamped 3-DOF system. For the case with no damping in
the intervening structure and vibration absorber (C3 = c=0), equation (2) is

1+ k
(M3 +m)s2 +K3

ms2(M3 s2 +K3 )
=1+ k

(M3 +m)(s2 +v2
A )

mM3 s2(s2 +v2
B )

=0. (3)

The locus of transfer function zeros for equation (1) as a function of the vibration absorber
spring stiffness k is shown in Figure 3. Because these zeros also correspond to the roots
of the CE for the intervening structure and vibration absorber subsystem, each branch of



.   .374

the locus of zeros along the positive imaginary axis correspond to the range for which the
two natural frequencies of the subsystem can vary. Excitation frequencies for which the
numerator of equation (1) is zero when C3 = c=0 correspond to the solutions where the
loci intersect the imaginary axis. Consequently, the vibration absorber is appropriately
tuned provided one of the two natural frequencies of the subsystem consisting of the
intervening structure–vibration absorber assembly matches the excitation frequency. As
shown in Figure 3, the tuned vibration absorber can achieve complete attenuation of x2 (t)
for any excitation frequency not contained within the range

vA =X K3

M3 +m
QvQXK3

M3
=vB . (4)

In this frequency range, a natural frequency of the intervening structure–vibration
absorber assembly does not exist. The first branch is upper bounded in frequency by the
case when k:a. Hence, with an infinite vibration absorber spring stiffness the two masses
(m of the vibration absorber and M3 of the intervening structure) act as a single collocated
vibration absorber with mass m+M3 . The second branch is lower bounded in frequency
when k=0. Hence, there is no connection between m and M3 and the intervening structure
is acting as a vibration absorber. Complete attenuation of every other frequency not within
the frequency range defined in equation (4) can be achieved using an appropriate real value
for k. For excitation frequencies between vA and vB , performance is determined by the
frequency responses of the system with k=0 and k=a as shown in Figure 4. The two
branches of the loci also reveal that for a single vibration absorber stiffness, two excitation
frequencies are attenuated simultaneously, although the two frequencies are not arbitrary.

2.1.1.2. Analysis of =x2 (t)= for damped 3-DOF system. Using equation (2), the loci of zeros
for equation (1) excluding (C2S+K2) as a function of k for damped cases can be
determined. For the first case C3 =0 and c$ 0,

Figure 3. The locus of zeros for the case C3 = c=0. ×, poles of G(s); w, zeros of G(s); vA =zK3 /(M3 +m);
vB =zK3 /M3 .
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Figure 4. The lower performance bound for a non-collocated tuned vibration absorber. ——, k=a; · · · · ·,
k=0.

1+ k
(M3 +m)s2 +K3

M3ms4 + (M3c+mc)s3 + (K3m)s2 +K3cs
=0. (5)

zXXXXXXXcXXXXXXXv
G(s)

The zeros of G(s) in equation (5) remain purely imaginary. However, the pole in G(s),
which was originally at the origin for the undamped case, is now located on the negative
real axis (Figure 5). The poles of G(s) that were originally purely imaginary are now
complex poles with negative real parts. Consequently, the loci of zeros for equation (1)
do not intersect the imaginary axis except in the extreme case when k:a. In this case,
the two masses m and M3 become one mass (m+M3 ) and behave as an undamped
vibration absorber. Therefore, complete attenuation of =x2 (t)= at steady state conditions can
only be achieved in the extreme case at a specific excitation frequency.

Figure 5. The locus of zeros for the case C3 =0, c=2 Ns /m. ×, poles of G(s); w, zeros of G(s).
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Figure 6. The locus of zeros for the case C3 =5 Ns /m. c=0. ×, Poles of G(s); w, zeros of G(s).

Alternatively, for the case when C3 $ 0 and c=0,

1+ k
(M3 +m)s2 +C3 s+K3

M3ms4 + (C3m)s3 + (K3m+C3c)s2 =0. (6)

The zeros of G(s) in equation (6) migrate from the imaginary axis into the complex plane
with negative real parts. The two poles of G(s) that were originally purely imaginary for
the undamped case are now complex poles with negative real parts. The loci of zeros for
equation (1) are shown in Figure 6. No purely imaginary zeros exist in this case. However,
in the extreme case in which C3:a, M3 and M2 behave as one mass (M2 +M3 ) and the
undamped vibration absorber is now collocated.

Hence, if damping exists in the intervening structure and/or the vibration absorber,
complete attenuation of =x2 (t)= cannot be realized. The performance goal of the vibration
absorber in this case is then to minimize the magnitude of =x2 (t)=. To illustrate the effects
of damping on performance, frequency responses for the system with parameters
M1 =M2 =M3 =2·5 kg, K1 =K2 =K3 =10 kN/m, m=0·25 kg are shown in Figures
7–11. The performance for an undamped tuned vibration absorber for various values of
system damping Cq $ 0 are shown in Figures 7–10. The performance of a damped
vibration absorber, c$ 0 is shown in Figure 11. The solid line in these frequency responses
are for the case where the absorber is not attached. The dashed line represents the
maximum attainable attenuation of =x2 (t)= with an optimally tuned vibration absorber. The
attenuation performance which will serve as a benchmark is the case with the lowest value
of Cq shown in Figure 7. Figures 8 and 9 reveal that the attenuation performance is not
significantly sensitive to changes in the damping of the non-intervening structure except
in a small frequency band at point B. In contrast, an increase in damping in either the
intervening structure or absorber damping degrades performance as illustrated in Figures
10 and 11. Point A is the case in which the intervening structure alone behaves as a
vibration absorber.

2.1.2. Steady state attenuation of =x1 (t)=
The non-collocated vibration control problem for control at x1 (t) of the 3-DOF system

is more complex due to an increase in the order of the intervening structure. The transfer
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Figure 7. Frequency responses of X2 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =1 Ns /m, C3 =1 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.

function relating the displacement X1 (s) with respect to the excitation force is

X1 (s)/F(s)= [M2M3ms6 + (M2cm+C2M3m+C3M3m+M2M3c+M2C3m)s5

+(M2C3c+C2M3c+C3cm+K2M3m+M2M3k+M2km+C3M3c

+M2K3m+C2cm+C2C3m+K3M3m)s4 + (M2C3k+M2K3c

+C2M3k+K2M3c+C2km+K3cm+C2C3c+C3M3k+C2K3m

+K2C3m+C3km+K3M3c+K2cm)s3 + (K3M3k+M2K3k

+K3km+C2C3k+K2M3k+C2K3c+K2km+K2K3m

+K2C3c)s2 + (K2C3k+K2K3c+C2K3k)s+K2K3k]/D(s). (7)

Figure 8. Frequency responses of X2 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =10 Ns /m, C2 =1 Ns /m, C3 =1 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.
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Figure 9. Frequency responses of X2 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =10 Ns /m, C3 =1 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.

The zeros of the numerator of equation (7) can be rewritten as

1+ k[(M2m+M2M3 )s4 + (C2m+C2M3 +C3m+C3M3 +M2C3 )s3 + (K3M3

+K3m+K2m+C2C3 +M2K3 +K2M3 )s2 + (C2K3 +K2C3 )s+K2K3 ]/D1 (s)=0,
(8)

where

D1 (s)=M2M3ms6 + (C2M3m+M2C3m+C3M3m+M2M3c+M2cm)s5

+(C3M3c+K2M3m+M2K3m+M2C3c+C3cm+C2M3c+C2C3m

+C2cm+K3M3m)s4 + (K2cm+K2M3c+M2K3c+K2C3m+C2K3m

+K3cm+C2C3c+K3M3c)s3 + (C2K3c+K2K3m+K2C3c)s2 +K2K3cs.

Figure 10. Frequency responses of X2 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =1 Ns /m, C3 =10 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.
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Figure 11. Frequency responses of X2 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =1 Ns /m, C3 =1 Ns /m, c=0·1 Ns /m. —, response without absorber; ––,
lower bound on response with tuned absorber.

The effect of the system parameters on the vibration absorber performance will be
developed for both the undamped and damped case.

2.1.2.1. Analysis of =x1 (t)= for undamped 3-DOF system. For the case of an undamped
intervening structure and vibration absorber, equation (8) becomes

1+ k
(M2M3 +M2m)s4 + (K2m+M2K3 +K3m+K2M3 +K3M3 )s2 +K2K3

ms2(M2M3 s4 + (K2M3 +K3M3 +M2K3 )s2 +K2K3 )
=0, (9)

or, in factored form,

1+ k
(M2M3 +M2m)(s2 +v2

A )(s2 +v2
C )

m(M2M3 )s2(s2 +v2
B )(s2 +v2

D )
=0. (10)

The locus of zeros is shown in Figure 12. Complete steady state attenuation of =x1 (t)= is
possible for the three frequency ranges 0EvEvA , vB EvEvC and vD EvEa, where
the locus of zeros coincides with the imaginary axis.

2.1.2.2. Analysis of =x1 (t)= for damped 3-DOF system. The effects of damping in the
intervening structure and vibration absorber on performance will be investigated in
this section. Excluding the extreme cases, damping which causes the 3-DOF system
to behave as a 2-DOF or a 1-DOF system, the performance will be analyzed based
on the steady state minimization of =x1 (t)=. To illustrate the effects of damping on
performance for an undamped tuned vibration absorber, frequency responses for the
system with parameters M1 =M2 =M3 =2·5 kg, K1 =K2 =K3 =10 kN/m, m=0·25 kg
are given in Figures 13–16. The solid line in these frequency responses denotes the
case when the absorber is not attached. The dashed line represents the maximum
attainable attenuation of =x1 (t)= with an optimally tuned vibration absorber. The
attenuation performance plot of the system with least damping, which will serve as
a benchmark, is shown in Figure 13. Points A and B represent the case in which
the intervening structure acts as a vibration absorber. When the damping in the
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Figure 12. Locus of zeros for the case C2 =C3 = c=0. × , poles of G(s); w, zeros of G(s).

non-intervening structure is increased, the performance does not change significantly as
shown in Figure 14. However, when the damping in the intervening structure increases,
the performance of the vibration absorber decreases, as shown in Figures 15 and 16. This
emphasizes that the attenuation performance of the vibration absorber is contingent on
the amount of damping in the intervening structure and vibration absorber.

2.2. 

The analysis of the 3-DOF vibrating system shows the performance potential of a
non-collocated passive vibration absorber. From this dynamic analysis, trends are revealed
which can be generalized to an N-DOF system. Specifically, the zeros of the transfer

Figure 13. Frequency responses of X1 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =1 Ns /m, C3 =1 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.
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Figure 14. Frequency responses of X1 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =10 Ns /m, C2 =1 Ns /m, C3 =1 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.

function Xi (s)/F(s) contain the characteristic equation of the subsystem consisting of both
the intervening structure and absorber. For the undamped case, the amplitude of =xi (t)=
can be completely attenuated when one of the natural frequencies of the intervening
structure and vibration absorber subsystem matches the excitation frequency. Therefore,
if there are L DOF in the intervening structure and vibration absorber subsystem, L
different frequencies (although not arbitrary) can be attenuated for a given set of absorber
parameters. Furthermore, damping in the intervening structure-vibration absorber
assembly subsystem degrades attenuation performance. The analysis also demonstrated
that performance curves associated with the vibration absorber intersect the frequency
response of the original system without the vibration absorber at those frequencies where
the intervening structure behaves as a vibration absorber. In the damped case, the

Figure 15. Frequency responses of X1 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =10 Ns /m, C3 =1 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.
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Figure 16. Frequency responses of X1 for the 3-DOF system and the 3-DOF system appended with a tuned
vibration absorber: C1 =1 Ns /m, C2 =1 Ns /m, C3 =10 Ns /m, c=0. —, response without absorber; ––, lower
bound on response with tuned absorber.

attenuation performance of the vibration absorber is dependent on the frequency of
interest and the amount of damping in the intervening structure and vibration absorber.
In general, the vibration absorber is most effective when the system is being excited near
a resonant frequency of the original system without the absorber attached.

3. CONTROL LAW DEVELOPMENT

Presented in this section is the development of a feedback based tuning algorithm for
the non-collocated adaptive–passive vibration control problem. The objective of the
algorithm is to tune a non-collocated vibration absorber such that the steady state
amplitude at the point of interest is mimimized. The previous dynamic analysis revealed
that complete steady state attenuation is only achievable (1) when damping is absent in
both the vibration absorber and the intervening structure, and (2) when one of the natural
frequencies of this subsystem consisting of the intervening structure–vibration absorber
assembly matches the excitation frequency. Once damping is introduced, complete
attenuation is not achievable. Hence the tuning and performance of the adaptive–passive
vibration absorber becomes contingent upon the amount of damping. To develop the
control law, a robust tuning algorithm will be developed first for the undamped case. This
control law will then be modified so that it can be directly extended to the damped case.

3.1.     

The performance goal for tuning a non-collocated vibration absorber is to minimize the
steady state amplitude of the ith mass, where i $ I+/N. Consider the case when damping
is absent in both the intervening structure and the vibration absorber, Cq = c=0, where
q $ I(i+1)/(N+1). To achieve precise tuning, the degree of attenuation performance and tuning
direction must be identified. The degree of attenuation performance in this investigation
will be determined by the amplitude of the ith mass which corresponds to the point of
interest. The tuning direction will be determined using a phase condition which ensures
that one of the natural frequencies of the intervening structure-vibration absorber
assembly subsystem equals the excitation frequency. The subsystem has N− i+1 degrees
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Figure 17. The pth branch of the locus of zeros for Xi (s)/F(s).

of freedom and therefore N− i+1 natural frequencies. The ranges for these natural
frequencies are bounded within the N− i+1 branches of the locus of zeros along the
positive imaginary axis for the transfer function Xi (s)/F(s) as the absorber spring stiffness
is varied from 0 to a. Tuning information will be extracted from the locus of zeros for
Xi (s)/F(s). The pth branch of the locus, where vsp is the pth natural frequency of the
subsystem, is illustrated in Figure 17. If the excitation frequency is v=v1 qvsp , the spring
stiffness of the vibration absorber must be increased such that vsp equals v1 . For the case
v=v2 Qvsp , the spring stiffness of the vibration absorber must be decreased such that
vsp equals v2 . A comparison between the excitation frequency and a natural frequency of
the subsystem can be used to identify the required tuning direction. A realization of this
comparison can be determined based on the phase difference between xa (t) and xi (t).

Figure 18. The frequency response (a) for a 2-DOF subsystem (b).
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T 1

Tuning direction

p v {
Xa

F −{
Xi

F>(degrees) k

1 vQvs1 q−90 4
vqvs1 Q−90 Q

2 vQvs2 q+90 q
vqvs2 Q+90 Q

Odd vQvsp q−90 q
vqvsp Q−90 Q

Even vQvsp q+90 q
vqvsp Q+90 Q

Shown in Figure 18 is a representative frequency response of the vibration absorber
displacement xa (t) for a 2-DOF intervening structure–vibration absorber assembly
subsystem (N− i+1)=2. The natural frequencies of the subsystem are labeled as vsp

where p=1, 2. When the excitation frequency is within the frequency range of the pth
branch of the locus of zeros for the subsystem, the tuning relationship requires vsp =v.
For the 3-DOF subsystem (refer to Figure 18) when 0 QvQvA , the tuning condition is
vs1 =v and when vB QvQa the tuning requirement is vs2 =v. For the frequency
interval vA QvQvB , the range of natural frequencies for the intervening structure–vi-
bration absorber assembly is not able to be matched to the excitation frequency. Thus an
absorber spring stiffness does not exist such that complete vibration attenuation can be
achieved.

The phase information from the frequency response will be used to establish the required
tuning direction for vsp . For instance, if v is in the frequency range (0, vA ) and vQvs1 ,
then the phase of the absorber for the subsystem is less than −90° and the absorber spring
stiffness should be decreased. Various conditions for the different scenarios are tabulated
in Table 1. The advantage of using the phase difference between xa (t) and xi (t) to establish
the tuning direction is the robustness of this approach to system parameters (i.e., M’s and
K’s) and to aging.

Determination of the phase between xa (t) and xi (t) can be realized with two
accelerometers or other motion sensors (one attached to the mass of the vibration absorber
and the other attached to the ith mass) and a synchronous demodulator. The synchronous
demodulator (SD) is a device that has two inputs and one output. The operation of the
SD is as follows: when input signal 1 crosses zero, integration of input signal 2 begins.
Another zero crossing of input signal 1 terminates the integration and the value from this
integration is the output of the synchronous demodulator. When both input signals to the
synchronous demodulator are sinusoids of the same frequency, the synchronous
demodulator can be used to determine the relative phase between the two input signals
about 290°. Illustrated in Figures 19 and 20 is the operation of the synchronous
demodulator for two cases. The signs of the output for the synchronous demodulator are
tabulated in Table 2. The sign of the synchronous demodulator output indicates tuning
direction provided that it is known in which branch of the locus of zeros the excitation
frequency is contained. Two accelerometers and a synchronous demodulator will provide
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Figure 19. An example of a synchronous demodulator when input signal 2 lags input signal 1 by 90°.

the necessary information for tuning direction. A schematic of this configuration is shown
in Figure 21.

3.2.     

A robust control algorithm for the precise tuning of a vibration absorber when damping
is not present in the intervening structure–vibration absorber assembly is developed in the
previous section. However, when damping exists in the intervening structure, this tuning
scheme may need to be modified. In this section, a robust tuning algorithm is developed
that extends the previous tuning scheme to a more general class of systems having damping
in the intervening structure.

The precise tuning of the vibration absorber for the damped case is contingent on the
amount of damping in the system which complicates the tuning process. Consequently, it
is necessary to place restrictions on the class of systems addressed by the tuning control

Figure 20. An example of a synchronous demodulator when input signal 2 lags input signal 1 by 60°.
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T 2

Output sign of synchronous demodulator

f={(input1 )−{(input2 ) Synchronous demodulator output

f=90° Zero
f=−90° Zero

−90°QfQ 90° Positive
90°QfQ 270° Negative

law. Damping causes the phase shift associated with each pole and zero to occur over a
larger frequency range about the corresponding break frequencies. This, as well as closely
spaced modes, can cause significant phase (modal) overlap which may distort the phase
information between xa (t) and xi (t) such that tuning direction cannot be based solely on
phase difference. The class of systems to be considered are lightly damped systems without
closely spaced modes such that significant phase (modal) overlap does not occur. This class
of problems is still relatively large, particularly at low frequencies for structures.

Shown in Figure 22 is a representative frequency response which illustrates the
performance and tuning requirement for a 2-DOF system appended with a vibration
absorber where x1 (t) is to be minimized. This plot shows the phase relation between xa (t)
and x1 (t) as a function of frequency. At low frequencies the tuning requirement is similar
to the tuning requirement for the undamped case. At higher frequencies the phase
difference decreases. Similar trends can be developed for the 3-DOF system with a
vibration absorber when either x1 (t) or x2 (t) is considered for attenuation, as shown in
Figures 23 and 24, respectively.

These trends in the phase relationship between xa (t) and xi (t) can provide the necessary
information required for extending the tuning algorithm of the undamped case to a tuning
algorithm for the damped case. Consider the frequency response of X1 (s)/F(s) shown in
Figure 22 for the 2-DOF system, where the desired attenuation is

BX1 (jv)
F(jv) BE d.

As shown in the phase information, at low frequencies the desired performance is obtained
using the tuning method for the undamped case. For higher frequencies, the solution
developed for the undamped tuning method does not tune the absorber to the optimal
conditions. Although the undamped tuning method does not result in optimal tuning at
high frequencies, it provides a starting point for which a feedback based tuning approach
can be developed. The phase difference between xa (t) and xi (t) achieved using the
undamped system condition provides the necessary tuning direction. To decrease the phase
difference between xa (t) and xi (t), feedback based tuning [1] is used to increase the
absorber spring stiffness (increasing the break frequencies of the zeros for Xi (s)/F(s)) until
the desired performance level of =x1 (t)=E d
 is achieved, where d
 is the time domain
representation of d.

Figure 21. A schematic of an undamped tuning scheme.
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Figure 22. (a) The performance and (b) the tuning condition for x1 (t) of the 2-DOF system appended with
a vibration absorber: M1 =M2 =2·5 kg, K1 =K2 =10 kN/m, C1 =C2 =5 Ns /m, m=0.25 kg, c=0.

The tuning algorithm which extends the undamped tuning method to make it applicable
to systems with damping is presented in Figure 25. For stage 1, the algorithm is identical
to the undamped case. Once the vibration absorber is tuned based on the undamped case
(i.e., the output of the synchronous demodulator signal is driven to zero), the amplitude
of xi (t) is compared with a achievable desired level d
 . If the =xi (t)=q d
 , the controller begins
increasing the absorber spring stiffness until =xi (t)=E d
 . The absorber spring stiffness then
remains constant until =xi (t)=q d
 (due to environmental changes) at which time the tuning
control law begins the tuning process again.

The phase relation between xa (t) and xi (t) and the amplitude of xi (t) are the two
necessary pieces of system information required such that the tuning algorithm will initiate
the appropriate action. Using two accelerometers, one attached to absorber mass and the
other attached to the ith mass, the synchronous demodulator can be used to provide the
phase relationship between xa (t) and xi (t). The amplitude of xi (t) can be obtained by
passing the accelerometer signal representing xi (t) through a rectifier and capacitor. This
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will provide a DC voltage (VRC ) representation of the amplitude of vibration. A schematic
of this configuration is shown in Figure 26.

The choice of d
 is significant. If d
 is chosen to be too small, the absorber spring stiffness
will not converge to a value in stage two of the controller. If d
 is chosen to be too large,
the performance of the absorber will not be maximized. An experimental approach can
be used to choose d
 . By implementing the controller on the system with d
 set to zero, an
achievable level of performance can be determined from the time history of VRC . From
this time history, an appropriate value for d
 can be chosen.

4. EXPERIMENTAL AND SIMULATION RESULTS

The verification of the robust control tuning algorithm is presented in this section. First,
experimental verification of the tuning control algorithm is performed on a scaled model
building appended with a variable stiffness vibration absorber. The scaled model building

Figure 23. (a) The performance and (b) the tuning condition for x1 (t) of the 3-DOF system appended with
a vibration absorber: M1 =M2 =M3 =2·5 kg, K1 =K2 =K3 =10kN/m, C1 =C2 =C3 =5 Ns/m, m=0·25 kg,
c=0.
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Figure 24. (a) The performance and (b) the tuning condition for x2 (t) of the 3-DOF system appended with
a vibration absorber: M1 =M2 =M3 =2·5 kg, K1 =K2 =K3 =10 kN/m, C1 =C2 =5 Ns /m, C3 =1 Ns /m,
m=0.25 kg, c=0.

is used as an abstract example for illustrative purposes. Due to the limited frequency range
obtainable by the vibration absorber, it is not possible experimentally to verify the control
algorithm at frequencies corresponding to the second mode of the building and above.
Therefore, a virtual 3-DOF system (software system) implemented in real time will be used
so that the supporting control hardware used in the experimental portion can be used for
the verification. A detailed description of the experimental facility, the implementation of
the tuning scheme, and the experimental results will be presented.

4.1.   

The experimental test facility is shown schematically in Figure 27. The structure is a
four-story model building which can be represented as a 4-DOF lumped parameter system.
The bottom of the structure is rigidly attached to an APS Electro-Seis long stroke shaker
which is driven using single frequency excitation. The excitation signal to the shaker table
is generated by a Wavetek Model 75 digital signal generator. The amplifier used to drive
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Figure 25. The tuning algorithm flow diagram.

the shaker is a QSC audio power amplifier. The accelerometers are PCB model 302A and
have a sensitivity of 10 mV/g. The variable stiffness vibration absorber is appended to the
top of the structure. Accelerometers are mounted on the vibration absorber mass and the
floor of interest, and serve as feedback sensors for the controller.

A schematic of the variable stiffness vibration absorber is shown in Figure 28. The
vibration absorber is supported by a base and two end plates. A guide rod is attached to
the end plates and serves as a guide for the cylindrical mass which rides on a linear bearing.
The vibration absorber is tunable. The DC motor and gearing are used to change the
absorber spring stiffness by rotating the spring through the collar changing the number
of active spring coils.

4.2.  

The adaptive–passive tuning algorithm is implemented on a Compaq 486-66 computer
using Real Time Workshop, a toolbox produced by Math Works. A schematic for the
control system is shown in Figure 29. The two accelerometers signals are used as the inputs

Figure 26. A schematic of the damped tuning scheme.
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Figure 27. The shaker and 4-DOF building appended with a vibration absorber.

and the DC motor voltage, which drives the variable stiffness vibration absorber, is the
output.

The accelerometer signals are passed through standard PCB amplifiers and sent to a
band-pass filtering network. These cascaded high pass and low pass Wavetek filters remove
both the high frequency signal noise and the DC offset from the two accelerometer signals.
To preserve the relative phase between the two signals, the filters are identical. Removal
of the DC offset is necessary for the triggering operation of the synchronous demodulator.
The rectifier and capacitor circuit is used to provide a DC representation of the amplitude
of vibration. Both the DC outputs from the synchronous demodulator and the
rectifier/capacitor circuit are interfaced with an open architecture control system using
Real Time Workshop (RTW) and Keithley data acquisition boards. The control law is
developed in RTW. A dead zone in the control law is used to reduce chatter. The control
algorithm processes the signals according to the flowchart in Figure 25. The appropriate
control action from this algorithm is sent through a saturation element to limit the
maximum voltage sent from the D/A board. This signal is then amplified with a current
driver and sent to the DC motor to change the spring stiffness of the vibration absorber.
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Figure 28. The variable stiffness vibration absorber.

4.3.  

Two tests were performed using the 4-DOF structure appended with a vibration
absorber. The first test is concerned with the vibration attenuation of the third floor.
Therefore, accelerometer 2 is mounted to the third floor. The second test is concerned with
the vibration attenuation of the second floor. In each test, the vibration absorber is initially
mistuned. When the control algorithm has tuned the vibration absorber, the excitation
frequency is changed to illustrate robustness.

For each test, two sets of transient responses are shown. The first set consists of three
transient plots. The first plot contains the output of the rectifier and capacitor circuit (VRC ).
This voltage provides a DC representation of the amplitude of vibration for the location
of interest. The second plot shows the stage of operation for the controller algorithm.
During the first stage of operation, the vibration absorber is tuned such that the
synchronous demodulator signal is zero. During the second stage, the absorber spring
stiffness is increased such that the amplitude of vibration at the point of interest is
attenuated within a prespecified tolerance (d
 ). During the third stage, the attenuation
performance is achieved, namely d
 eVRC , and the controller simply monitors
performance. The output of the synchronous demodulator (VSD ) is shown in the third
transient plot. The performance of the adaptive–passive vibration absorber will be
illustrated in the second set of figures. These transient responses contain the output
responses of the 4-DOF structure both with and without the vibration absorber appended.

4.3.1. Attenuation of the third floor
Initially, the structure is excited at a frequency of 6·5 Hz. The tuning algorithm is

activated at t=5 s. At t=30 s, the excitation frequency is changed to 6 Hz. The control
algorithm parameters f and d
 are contingent upon the excitation and system parameters.
For this test, these parameters are f=−90°, d
 =0·8 and tol=1·2. The results of the test

Figure 29. Implementation of the control scheme.
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Figure 30. Experimental results with the third floor as the point of interest.

are shown in Figures 30 and 31. The control process for this test is shown in Figure 30.
Initially, the controller is in the first stage of operation. At approximately t=17 s, the
output of the synchronous demodulator reaches zero. Since VRC is less than d
 , the
controller remains in the first stage. At t=30 s, the excitation frequency changes and the
algorithm begins to retune the vibration absorber to drive VSD to zero.

The performance of the adaptive–passive vibration absorber is illustrated in Figure 31
by comparing the responses of the third floor for the 4-DOF system both with and without
the adaptive vibration absorber. At steady state, the tuned vibration absorber achieves a
24·2 dB and 24·3 dB reduction in the amplitude of filtered accelerometer signal of the third
floor for the excitation frequencies of 6·5 Hz and 6 Hz respectively.

Figure 31. The performance of the adaptive–passive vibration absorber with the third floor as the point of
interest: (a) response without vibration absorber appended; (b) response with vibration absorber appended.
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Figure 32. Experimental results with the second floor as the point of interest.

4.3.2. Attenuation of the second floor
For the second test, the structure is initially excited at a frequency of 6 Hz. Again, the

tuning algorithm is activated at t=5 s. At t=30 s, the excitation frequency is changed
to 5·6 Hz. For this test, the control algorithm parameters are f=−90°, d
 =1·2 and
tol=1·2. The results of the test are shown in Figures 32 and 33. The control process for
this test, shown in Figure 32, is similar to the previous test. The controller stays in the
first stage for the entire test. The performance of the adaptive–passive vibration absorber

Figure 33. The performance of the adaptive–passive vibration absorber with the second floor as the point of
interest: (a) response without vibration absorber appended; (b) response with vibration absorber appended.
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Figure 34. Implementation of the control scheme for simulations.

is illustrated in Figure 33. At steady state the tuned vibration absorber achieves a 18·1 dB
and 19·4 dB reduction in the amplitude of filtered accelerometer signal of the second floor
for the excitation frequencies of 6 Hz and 5·6 Hz, respectively.

4.4.   

To verify the control algorithm at higher frequencies in order to test other aspects of
the controller, a virtual 3-DOF system appended with a vibration absorber will be
investigated (Figure 2). This virtual system is built using RTW. Real time simulations of
the system are employed so that the controller hardware (amplifier, bandpass filter,
rectifier/capacitor circuit and the synchronous demodulator) used in the experimental
verification will remain the same. The schematic of this system is shown in Figure 34. The
parameters for the virtual system are M1 =M2 =M3 =2·5 kg, C1 =C2 =C3 =5 Ns/m,
K1 =K2 =K3 =10 kN/m, m=0·25 kg and c=0.

4.5.   

The simulated results for the 3-DOF system appended with a vibration absorber are
separated into two cases. The first case is concerned with vibration attenuation of x2 (t).
The second case concerns the attenuation of x1 (t). In each test case, the vibration absorber
is initially mistuned. Once the control algorithm has tuned the vibration absorber, the
excitation frequency is changed. The control algorithm then retunes the absorber.

4.5.1. Case 1: attenuation of =x2 (t)=
Initially, the excitation is f(t)=100 sin (25·25(2p)t) N. The tuning algorithm is activated

at t=5 s. At t=50 s, the excitation is changed to f(t)=100 sin (25(2p)t) N. The control
algorithm parameters f and d
 are contingent upon the excitation and system parameters.
For this test the parameters are f=90°, d
 =0·26 and tol=1·2. The results of the
simulation are shown in Figures 35 and 36. The control process for this simulation is shown
in Figure 35. Initially the controller is in its first stage of operation. The tuning of the
vibration absorber is based on driving the output of the synchronous demodulator, VSD

to zero. At approximately t=41 s, the output of the synchronous demodulator is zero.
Since the output of the rectifier and capacitor VRC is greater than d
 , the controller switches
to the second stage. In this stage, the controller tunes the absorber spring to increase the
spring stiffness. This tuning is based on the feedback error signal developed from the
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Figure 35. The results of simulation for case 1.

amplitude of VRC . The controller continues to tune spring stiffness until VRC E d
 , which
occurs at approximately t=43 s. The controller stops tuning and enters stage three. At
t=50 s, VRC becomes greater than (d
 ( tol) as a result of the change in excitation
frequency. At this point, the controller begins the stage one tuning process again.

Shown in Figure 36 is the performance of the adaptive–passive vibration absorber with
a comparison between the responses for the 3-DOF system with and without the adaptive
vibration absorber appended to the structure. At steady state the tuned vibration absorber
achieves 6 dB and 5·4 dB reductions in the amplitude of x2 (t) for the excitation frequencies
of 25·25 Hz and 25 Hz, respectively.

Figure 36. The performance of the adaptive–passive vibration absorber for Case 1: (a) response without
vibration absorber appended; (b) response with vibration absorber appended.
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Figure 37. The results of simulation for case 2.

4.5.2. Case 2: attenuation of =x1 (t)=
Initially, the system excitation is f(t)=20 sin (18·5(2p)t) N. The tuning algorithm is

turned on at t=5 s. At t=50 s, the excitation is changed to f(t)=20 sin (19(2p)t) N. For
this test, the system parameters are chosen to be f=−90°, d
 =0·66 and tol=1·2. The
results of the simulation are shown in Figures 37 and 38.

The control process for the simulation is shown in Figure 37. Notice that for the final
excitation frequency the controller remains in the first stage. Since VRC E d
 , the vibration
absorber is tuned such that the magnitude is at an acceptable level and the absorber is
sufficiently tuned based on the synchronous demodulator output.

Figure 38. The performance of the adaptive–passive vibration absorber for case 2: (a) response without
vibration absorber appended; (b) response with vibration absorber appended.
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In Figure 38 is shown the performance of the adaptive–passive vibration absorber, with
a comparison between the responses for the 3-DOF system with and without the adaptive
vibration absorber appended to the structure. At steady state the tuned vibration absorber
achieves 10·6 dB and 14·1 dB reductions in the amplitude of x1 (t) for the excitation
frequencies of 18·5 Hz and 19 Hz, respectively.

5. SUMMARY OF ANALYSIS AND EXPERIMENTAL AND SIMULATED RESULTS

The dynamic analysis of a non-collocated passive vibration absorber for vibration
attenuation was presented. Performance of the passive vibration absorber is contingent on
the amount of damping in the intervening structure–vibration absorber assembly and the
relative mass and spring rate of the tuned vibration absorber. It was found that there exists
a range of frequencies that cannot be controlled.

Based on the dynamic analysis, a feedback based tuning algorithm for a variable stiffness
vibration absorber was developed. First, the feedback tuning algorithm utilizes phase
information between the vibration absorber and point of interest to insure a 290°
difference. This phase condition results in the absorber being tuned at or near its optimal
parameters. The algorithm then uses the amplitude of vibration at the point of interest
as a error signal in a feedback regulator structure to minimize the residual vibration to
maximize performance.

The experimental and simulated results reveal the effectiveness of the tuning algorithm.
In each case, the algorithm is used to reduce the steady state amplitude of vibration at
the point of interest through proper tuning of the vibration absorber. Robustness of the
algorithm is demonstrated through its ability to robustly adapt to changes in excitation
frequency.
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